305 lines
14 KiB
Plaintext
305 lines
14 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "42ec1713",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import gradio as gr\n",
|
|
"from deal_agent_framework import DealAgentFramework\n",
|
|
"from agents.deals import Opportunity, Deal"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "29dfdb7b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Running on local URL: http://127.0.0.1:7860\n",
|
|
"\n",
|
|
"To create a public link, set `share=True` in `launch()`.\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": []
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"with gr.Blocks(title=\"The Price is Right\", fill_width=True) as ui:\n",
|
|
"\n",
|
|
" with gr.Row():\n",
|
|
" gr.Markdown('<div style=\"text-align: center;font-size:24px\">The Price is Right - Deal Hunting Agentic AI</div>')\n",
|
|
" with gr.Row():\n",
|
|
" gr.Markdown('<div style=\"text-align: center;font-size:14px\">Autonomous agent framework that finds online deals, collaborating with a proprietary fine-tuned LLM deployed on Modal, and a RAG pipeline with a frontier model and Chroma.</div>')\n",
|
|
" \n",
|
|
"\n",
|
|
"ui.launch(inbrowser=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "a131dd88",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Running on local URL: http://127.0.0.1:7861\n",
|
|
"\n",
|
|
"To create a public link, set `share=True` in `launch()`.\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": []
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"with gr.Blocks(title=\"The Price is Right\", fill_width=True) as ui:\n",
|
|
"\n",
|
|
" # Sample deal to populate initially\n",
|
|
" initial_deal = Deal(\n",
|
|
" product_description=\"Example description\",\n",
|
|
" price=100.0,\n",
|
|
" url=\"https://cnn.com\"\n",
|
|
" )\n",
|
|
" initial_opportunity = Opportunity(\n",
|
|
" deal=initial_deal,\n",
|
|
" estimate=200.0,\n",
|
|
" discount=100.0\n",
|
|
" )\n",
|
|
" opportunities = gr.State([initial_opportunity])\n",
|
|
"\n",
|
|
" def get_table(opps):\n",
|
|
" return [\n",
|
|
" [opp.deal.product_description, opp.deal.price, opp.estimate, opp.discount, opp.deal.url]\n",
|
|
" for opp in opps\n",
|
|
" ]\n",
|
|
"\n",
|
|
" with gr.Row():\n",
|
|
" gr.Markdown('<div style=\"text-align: center;font-size:24px\">\"The Price is Right\" - Deal Hunting Agentic AI</div>')\n",
|
|
" with gr.Row():\n",
|
|
" gr.Markdown('<div style=\"text-align: center;font-size:14px\">Deals surfaced so far:</div>')\n",
|
|
"\n",
|
|
" # Scrollable table container using HTML\n",
|
|
" with gr.Row():\n",
|
|
" gr.HTML(\"<div style='max-height: 400px; overflow-y: auto;'>\")\n",
|
|
" opportunities_dataframe = gr.Dataframe(\n",
|
|
" headers=[\"Description\", \"Price\", \"Estimate\", \"Discount\", \"URL\"],\n",
|
|
" wrap=True,\n",
|
|
" column_widths=[4, 1, 1, 1, 2],\n",
|
|
" row_count=10,\n",
|
|
" col_count=5\n",
|
|
" )\n",
|
|
" gr.HTML(\"</div>\")\n",
|
|
"\n",
|
|
" ui.load(get_table, inputs=[opportunities], outputs=[opportunities_dataframe])\n",
|
|
"\n",
|
|
"ui.launch(inbrowser=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "250e4890",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[44m\u001b[37m[Agent Framework] Initializing Agent Framework\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[44m\u001b[37m[Agent Framework] Initializing Agent Framework\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[32m[Planning Agent] Planning Agent is initializing\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[32m[Planning Agent] Planning Agent is initializing\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is initializing\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is initializing\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[33m[Ensemble Agent] Initializing Ensemble Agent\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[33m[Ensemble Agent] Initializing Ensemble Agent\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is initializing - connecting to modal\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is initializing - connecting to modal\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Initializing Frontier Agent\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Initializing Frontier Agent\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is set up with Groq\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is set up with Groq\u001b[0m\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] Use pytorch device_name: cpu\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] Use pytorch device_name: cpu\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
|
|
"[2025-05-28 21:22:00 +0530] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
|
|
"[2025-05-28 21:22:05 +0530] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:05 +0530] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:05 +0530] [Agents] [INFO] \u001b[40m\u001b[35m[Random Forest Agent] Random Forest Agent is initializing\u001b[0m\n",
|
|
"[2025-05-28 21:22:05 +0530] [Agents] [INFO] \u001b[40m\u001b[35m[Random Forest Agent] Random Forest Agent is initializing\u001b[0m\n",
|
|
"[2025-05-28 21:22:05 +0530] [Agents] [INFO] Use pytorch device_name: cpu\n",
|
|
"[2025-05-28 21:22:05 +0530] [Agents] [INFO] Use pytorch device_name: cpu\n",
|
|
"[2025-05-28 21:22:05 +0530] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
|
|
"[2025-05-28 21:22:05 +0530] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[35m[Random Forest Agent] Random Forest Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[35m[Random Forest Agent] Random Forest Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[33m[Ensemble Agent] Ensemble Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[33m[Ensemble Agent] Ensemble Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[37m[Messaging Agent] Messaging Agent is initializing\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[37m[Messaging Agent] Messaging Agent is initializing\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[37m[Messaging Agent] Messaging Agent has initialized Pushover\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[37m[Messaging Agent] Messaging Agent has initialized Pushover\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[32m[Planning Agent] Planning Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[40m\u001b[32m[Planning Agent] Planning Agent is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[44m\u001b[37m[Agent Framework] Agent Framework is ready\u001b[0m\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] \u001b[44m\u001b[37m[Agent Framework] Agent Framework is ready\u001b[0m\n",
|
|
"Running on local URL: http://127.0.0.1:7862\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] HTTP Request: GET http://127.0.0.1:7862/startup-events \"HTTP/1.1 200 OK\"\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] HTTP Request: GET http://127.0.0.1:7862/startup-events \"HTTP/1.1 200 OK\"\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] HTTP Request: HEAD http://127.0.0.1:7862/ \"HTTP/1.1 200 OK\"\n",
|
|
"[2025-05-28 21:22:11 +0530] [Agents] [INFO] HTTP Request: HEAD http://127.0.0.1:7862/ \"HTTP/1.1 200 OK\"\n",
|
|
"\n",
|
|
"To create a public link, set `share=True` in `launch()`.\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": []
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[2025-05-28 21:22:12 +0530] [Agents] [INFO] HTTP Request: GET https://api.gradio.app/pkg-version \"HTTP/1.1 200 OK\"\n",
|
|
"[2025-05-28 21:22:12 +0530] [Agents] [INFO] HTTP Request: GET https://api.gradio.app/pkg-version \"HTTP/1.1 200 OK\"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"agent_framework = DealAgentFramework()\n",
|
|
"agent_framework.init_agents_as_needed()\n",
|
|
"\n",
|
|
"with gr.Blocks(title=\"The Price is Right\", fill_width=True) as ui:\n",
|
|
"\n",
|
|
" initial_deal = Deal(product_description=\"Example description\", price=100.0, url=\"https://cnn.com\")\n",
|
|
" initial_opportunity = Opportunity(deal=initial_deal, estimate=200.0, discount=100.0)\n",
|
|
" opportunities = gr.State([initial_opportunity])\n",
|
|
"\n",
|
|
" def get_table(opps):\n",
|
|
" return [[opp.deal.product_description, opp.deal.price, opp.estimate, opp.discount, opp.deal.url] for opp in opps]\n",
|
|
"\n",
|
|
" def do_select(opportunities, selected_index: gr.SelectData):\n",
|
|
" row = selected_index.index[0]\n",
|
|
" opportunity = opportunities[row]\n",
|
|
" agent_framework.planner.messenger.alert(opportunity)\n",
|
|
"\n",
|
|
" with gr.Row():\n",
|
|
" gr.Markdown('<div style=\"text-align: center;font-size:24px\">\"The Price is Right\" - Deal Hunting Agentic AI</div>')\n",
|
|
"\n",
|
|
" with gr.Row():\n",
|
|
" gr.Markdown('<div style=\"text-align: center;font-size:14px\">Deals surfaced so far:</div>')\n",
|
|
"\n",
|
|
" with gr.Row():\n",
|
|
" gr.HTML(\"<div style='max-height: 400px; overflow-y: auto;'>\")\n",
|
|
" opportunities_dataframe = gr.Dataframe(\n",
|
|
" headers=[\"Description\", \"Price\", \"Estimate\", \"Discount\", \"URL\"],\n",
|
|
" wrap=True,\n",
|
|
" column_widths=[4, 1, 1, 1, 2],\n",
|
|
" row_count=10,\n",
|
|
" col_count=5\n",
|
|
" )\n",
|
|
" gr.HTML(\"</div>\")\n",
|
|
"\n",
|
|
" ui.load(get_table, inputs=[opportunities], outputs=[opportunities_dataframe])\n",
|
|
" opportunities_dataframe.select(do_select, inputs=[opportunities], outputs=[])\n",
|
|
"\n",
|
|
"ui.launch(inbrowser=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1cb83e9b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.22"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|